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ABSTRACT 

Let K[G] be the group algebra of a locally finite group G over a field K 

of characteristic p > 0. If  G has a locally subnormal  subgroup of order 

divisible by p, then it is easy to see tha t  the Jacobson radical flK[G] is not 

zero. Here, we come close to a complete converse by showing tha t  if G has 

no nonidentity locally subnormal  subgroups,  then K[G] is semiprimitive. 

The  proof of this theorem uses the much earlier semiprimitivity results 

on locally finite, locally p-solvable groups, and the more recent results 

on locally finite, infinite simple groups. In addition, it uses the beautiful 

properties of finitary permuta t ion  groups. 

1. I n t r o d u c t i o n  

The semiprimitivity problem for group algebras K[G] was intensively studied in 

the 1970's (see [P7]), but a good deal remains to be done. In [P2, Section If, 

the problem was essentially split into two parts. The first part concerns finitely 

generated groups, and still appears to be a rather hopeless task. The second part 

concerns locally finite groups, and this is much more promising. Indeed, for the 

remainder of this paper, we restrict our attention to the locally finite case. 

In [P3], probably the last paper written on semiprimitivity until quite recently, 

the case of locally finite, locally p-solvable groups was settled. At that  time, 
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it appeared that  the Classification of Finite Simple Groups (CFSG) would be 

required to deal with more general locally finite groups, and this has indeed 

proved to be the case. In the last few years, consequences of CFSG have been 

used in [P4], [Pb], [P6], and [PZ] to study the semiprimitivity of group algebras 

of locally finite groups under certain global assumptions. It is now time to return 

to the more important local assumptions. 

In order to precisely state our main result, we first require some definitions 

and notation. Let G be a locally finite group and let K[G] denote the group 

algebra of G over the field K. If (]'K[G] is the Jacobson radical of this algebra, 

then we say that  K[G] is s e m i p r i m i t i v e  provided ,]K[G] = O. The following 

key observation is due to Prof. S. A. Amitsur [Am]. 

LEMMA 1.1: I f  G is an arbitrary group and H is a subgroup of G, then 

,7"K[G] ~ K[H] C_ ,.TK[H]. 

This result turns out to be extremely powerful because it allows us to restrict 

our attention to certain subgroups of G. For example, in the context of locally 

finite groups, it yields [P2, Lemma 7.4.2], namely 

LEMMA 1.2: JK[G] is a nil ideal and K[G] is semiprimitive when c h a r K  = 0 

or when char K = p > 0 and G is a p'-group. 

In view of the above, it suffices to assume that char K = p > 0, where p is a 

prime fixed throughout the remainder of this paper. Note that a finite subgroup 

A of G is said to be local ly  s u b n o r m a l ,  written A lsn G, if A ~,~ B for all 

finite subgroups B of G containing A. For example, if G is locally nilpotent, 

then every finite subgroup of G is locally subnormal. Furthermore, every finite 

subnormal subgroup of G is certainly locally subnormal. As we will see, if A lsn G, 

then ,7"K[A] C_ JK[G], and hence, if [A[ is divisible by p, then K[G] is not 

semiprimitive. The conjecture for locally finite groups is that  this simple fact 

actually characterizes when K[G] is semiprimitive. In other words, we suspect 

that  K[G] is semiprimitive if and only if no such A exists. This has been verified 

for locally p-solvable groups in [P3] and for other families of groups in [P6]. Here, 

we come tantalizingly close to a complete converse with 

THEOREM 1.3: Let G be a locally finite group and let char K = p > 0. I f  G has 

no nonidentity locally subnormal subgroups, then K[G] is semiprimitive. 
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This is our main result and its proof will occupy the remainder of the paper. 

As an immediate consequence of the above, we have 

COROLLARY 1.4: Let G be a locally finite group. Then the group algebra F[G] 

is semiprimitive for all fields F of all characteristics if and only if G has no 

nonidentity locally subnormal subgroups. 

We mention this fact, not because it has any additional content, but rather 

because it shows that  we are on the right track. 
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2. T h e  S u b n o r m a l  C losu re  

This section contains some preliminary observations of a general nature. Recall 

that G is a locally finite group, K is a field of characteristic p > 0, and K[G] is 

the group algebra of G over K. 

LEMMA 2.1: Let A be a subgroup of G. 

(i) IrA ,~,1 G, then JK[A] C_ fig[G]. 
(ii) If A lsn G, then ffK[A] C_ JK[a]. In particular, if IA] is divisible by p, 

then K[G] is not semiprimitive. 

Proo~ (i) If A ,1 G, then [P2, Theorem 7.2.10] implies that  ffK[A] C_ JK[G] 

since G/A is locally finite. The subnormal case follows easily by induction. 

(ii) Now let A lsn G, so that  A is a finite subgroup of G. If B is any finite 

subgroup of G containing A, then A ,~,~ B and hence ffK[A] C_ ffK[B] by (i). In 

particular, fig[A]. K[B] is nil and therefore ffK[A]. K[G] is a nil right ideal of 

K[G]. Thus fig[A]. K[G] C_ fig[G], as required. Finally, if IAI is divisible by 

p, then ffK[A] r 0 by [P2, Theorem 2.4.2] and hence fig[G] r O. | 

As a consequence, we can now offer the 

Proof of Corollary 1.4: If G has no nonidentity locally subnormal subgroups, 

then Lemma 1.2 and Theorem 1.3 imply that  F[G] is semiprimitive for all fields 
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F of any characteristic. Conversely, if G has a nonidentity locally subnormal 

subgroup A, then we can choose a prime q dividing IA[ and we let char F = q. 

In this situation, part (ii) of the previous lemma implies that  J F [ G ]  r 0, and 

the result follows. 1 

Of course, we must still prove Theorem 1.3, and that is the goal of the remain- 

der of this paper. Our argument will use a number of the basic properties of 

subnormal subgroups of finite groups as can be found, for example, in [Wl] and 

[Z]. To start  with, let H C_ X be finite. Since the set of subnormal subgroups of 

X is closed under intersection, it follows that there is a unique smallest subnor- 

mal subgroup S of X which contains H. This is called the s u b n o r m a l  c losure  

of H in X,  and we denote it by S = H IX]. If H s is the normal closure of H in 

S, then H C_ H s < S <,1 X ,  so the minimal nature of S implies that  S = H s .  In 

fact, S is characterized by the two properties 

(i) H C_ S <,1 X, and 

(ii) S = H s 

since (ii) implies that  H cannot be cohtained in a proper normal subgroup of S, 

and hence it is not in a proper subnormal subgroup of S. Note that,  if X is a 

homomorphic image of X, and if H and S are as above, t h e n / ~  C_ S << )(  and 

= / lS.  Thus S is the subnormal closure o f / I  in )(. In general, subnormal 

closures do not exist for arbitrary subgroups of infinite groups. 

Now if H C_ X C_ Y are all finite, then H c_ H [Y] ~ X << X. Thus the minimal 

nature of H Ix] implies that  H Ix] C_ H Iv] N X C_ H[Y]. As will be apparent, this 

inclusion allows us to define a local  s u b n o r m a l  c losure  for finite subgroups of 

locally finite groups, and we use the same notation. Specifically, if H is a finite 

subgroup of G, then we set 

H[C] = U H[x] 
x 

where the union is over all finite subgroups X of G containing H. Note that, 

if G is finite, then the inclusion H Ix] C_ H IV] immediately implies that the two 

possible meanings for H [G] are, in fact, the same. 

At times, it will be necessary for us to work in the context of a fixed set of 

generating subgroups for G. Recall that s is said to be a local  s y s t e m  for G if 

Z: is a collection of finite subgroups with the property that every finite subgroup 

H of G is contained in some L C s In particular, if Lt,  L2 E l:, then there exists 

some L �9 s with (L1, L2> C_ L, and this property, along with G = (L[ L �9 s 
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clearly characterizes a local system. 

LEMMA 2.2: Let H be a finite subgroup of G, and set S = H [a]. 

(i) S is a subgroup of G containing H. 

(ii) I f  s is a local system for G, then { H[L][ L 6 s L _D H } is a local system 

for the subgroup S. 

(iii) I f  A lsn S, then A lsn G. 

(iv) S = H s is the normal closure of H in S, and Na(H) C_ Na(S). 

Proof: (i) If X and Y are finite subgroups of G containing H and if Z = <X, Y), 

then (H Ix], H [Y]> C_ H [z] C_ H[a]. Thus H [G] is a subgroup of G with the set of 

all such H [x] as a local system. 

(ii) Let X be a finite subgroup of S. Then (i) implies that  X C_ H [y] for some 

finite subgroup Y of G containing H. Furthermore, since s is a local system for 

G, there exists L 6 s with Y C_ L. Thus X c_ H [Y] C_ H ILl C H [G], as required. 

(iii) Let A lsn S and, by (i), let X be a finite subgroup of G containing H 

with A C H[X]. Now let B be any finite subgroup of G containing X. Then 

A C_ H Ix] C_ H Is] c_C - H[G], so A ~,~ H [B] since A lsn S. But H [B] ,~,~ B, so we 

conclude that  A ,~ B, and hence A lsn G. 

(iv) The equality S = H s is clear since H s contains each H Ix]. For the 

remaining part, let g 6 l~ta (H) and let Y be any finite subgroup of G containing 

g and H. Then H C H Iv] implies that H = g - l H g  C g-lH[V]g. But the 

latter group is also subnormal in Y, so g-lH[Vlg = H Iv] and it follows that g 

normalizes S = H [G] = [Jy H [Y] . | 

We remark that  parts (ii) and (iii) above allow us to reduce the proof of 

Theorem 1.3 to certain local subnormal closures. However, it is the condition 

S = H s in (iv) which really turns out to be crucial. 

If N is any subgroup of G, we define its a lmos t  or f in i t a ry  cen t ra l i ze r  by 

DG(N) = { x e G I IN : CN(X)l < oo}, 

and it follows easily that  DG (N) is a subgroup of G. Furthermore, if N ,~ G, then 

DG (N) is the normal subgroup of G consisting of those elements which act in a 

f i n i t a ry  m a n n e r  on N. Note that  

DG(C) = ZX(C) = { x e C I IC: C (x)I < }, 
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and this group is called the f ini te  c o n j u g a t e  or f.c. c e n t e r  of G since it consists 

of those elements belonging to finite conjugacy classes. We say that G is an 

f.c. g r o u p  if G = A(G) and, in the context of locally finite groups, this is 

equivalent to G being local ly  no rma l .  In other words, G = A(G) if and only 

if every finite subgroup of G is contained in a finite normal subgroup (see [P2, 

Lemma 4.1.8]). In fact, if G is an arbitrary periodic group, then A(G) is generated 

by, and hence is the join of, the finite normal subgroups of G. 

For any subgroup D of G there is a natural K[D]-bimodule projection map 

7tO: K[G] ~ g[D] given by 

7CD: E azx ~--* E a:cx. 
xEG xED 

Thus 71" D is the linear extension of the map G ~ DU{0} which is the identity on D 

and zero on G \ D. The following key observation is essentially [P3, Lemma 3.7]. 

Its proof uses basic properties of the Jacobson radical of K[G] as well as the 

known structure of the nilpotent radical of the group algebra. 

LEMMA 2.3: I f  g < G with J g [ g ]  = O, then JK[G] = JK[D]  . K[G] where 

D = DG (N).  In particular, 

7rD(JK[G]) = (]'K[D] C_ JK[G].  

If a ----- ~-]~a~:x E K[G], then the s u p p o r t  of a is the finite subset of G given 

by suppa  = {x  E G I a~ # 0}, and we call H = (suppa) the s u p p o r t i n g  

s u b g r o u p  of a. Clearly H is the smallest subgroup of G with a E K[H] and, 

since G is locally finite, H is finite. Next, we say that 3 E K[G] is a t r u n c a t i o n  

of a if ~ = ~~/a~x, where ~-~' indicates a partial sum of the terms in a. In 

addition,/3 is a p r o p e r  t r u n c a t i o n  if ~ # 0 or a. The next lemma is our first 

application of the subnormal closure. 

LEMMA 2.4: Let G be a locally finite group with local system s Suppose 

f f  K[G] # 0 and choose 0 7~ a E f f  K[G] of minimal nonzero support size. We 

can assume that 1 E supp a and we set H = (supp a). Then there exists a finite 

subgroup W of G containing H such that 

(i) W ,~,~ L for some L E s 

(ii) W = H w is the normal closure of H in W,  

(iii) no proper truncation of a is contained in I lK[W],  and 
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(iv) if N is any subgroup of G normalized by W and satisfying JK[N] = 0, 

then W is contained in A(NW).  

Proof." If a is a nonzero element of JK[G] of minimal support size and if 

g e suppa ,  then g- la  E ,TK[G], 1 E s u p p g - l a ,  and [ suppg- l a l  = Isuppa[.  

Thus, by replacing a by g-Xa if necessary, we can assume that  1 E supp a. 

Let /31,32,.. .  ,/3k be the finitely many proper truncations of a. Since 0 < 

[ supp#~i[ < [suppa[,  the minimal nature of [suppa[ implies that  no/3i is con- 

tained in ,TK[G]. In particular, the right ideals/3iK[G] are not nil, so there exist 

elements "ri E K[G] with 3i'Yi not nilpotent. Since s is a local system for G, 

there exists L E s containing H and the supports of all the "~i. Because JK[L] 

is nilpotent, it follows that/3~ q~ JK[L] for all i. 

Now let W = H ILl be the subnormal closure of H in L. Then certainly (i) and 

(ii) above are satisfied. Furthermore, since W <~,~ L, it follows from Lemma 2.1(i) 

that  JK[W] C_ JK[L]. Thus /3~ ~t JK[L] implies /3~ ~t J K [ W ] ,  and (iii) is 

proved. 

For part  (iv), suppose N is any subgroup of G normalized by W and satisfying 

,TK[N] = 0. If X = NW,  then N ,~ X, so the previous lemma implies that  

7rD(JK[X]) C JK[X],  where D = Dx(N).  Thus, since a e ,TK[G] N K[X] C_ 

JK[X]  by Lemma 1.1, we have IrD(a) �9 JK[X]  N K[W] C_ f ig[w] .  But 1to(a) 

is a truncation of a which is not zero since 1 �9 supp a. Thus part  (iii) implies 

that 7to(a) = a and hence that H = (suppa) C_ D. Indeed, since D ~ X,  (ii) 

yields W = H W c D. Finally, IX : N I < IW[ < ~ ,  so it is clear that  D = A(X),  

and therefore W C A(X),  as required. | 

We close this section with a routine result which allows us to reduce the proof 

of Theorem 1.3 to the case of countable groups. Such a reduction makes the 

verification of the main theorem somewhat easier to understand. 

LEMMA 2.5: L e t ,  be a property of finite groups (like being solvable or having 

order divisible by p) and let G be a locally finite group having no locally sub- 

normal ,-subgroups. Let s be a local system for G and let H be a countable 

subgroup of G. Then there exists a subgroup [t of G such that 

(i) [t D_ H and [1 is countable, 

(ii) [1 has no locally subnormal ,-subgroups, 

(iii) { L E E [ L  C_ H } is a local system for [-I. 
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Hence, by (i) and (iii), [I is the ascending union of groups L1 C_ L2 C_ L3 C . . .  
with each Li in s 

Proof: We construct an ascending series H = Ho C_ H1 C_ H2 C_ . . .  of countable 

groups satisfying 

(1) Hi is the ascending union of the finite groups Li,1 C_ Li,2 C_ Li,3 C_ . . .  with 

Li,j C s when i r 0, and 

(2) no finite ,-subgroup of Hi-1 is locally subnormal in Hi. 

To start with, since H = Ho is countable, it follows that Ho is an ascending 

union of finite subgroups Lo,1 C_ Lo,2 C_ Lo,3 C . . . .  Note that these subgroups 

are not assumed to belong to s 

Now suppose that Hi = Uj L i j  is given. Since Hi is countable, it has a count- 

able number of finite *-subgroups, say Ai,1, Ai,2, Ai,3,. . . .  By assumption, Ai,j 
is not locally subnormal in G, and hence there exists a finite subgroup Bi,j of G 

with Ai,j not subnormal in Bi,j. We now choose the groups Li+l,j E s induc- 

tively so that Li+l,j contains Li+l,j-1, Bi,j, and Li,j. Since Li+l,j D Li+l,j-1, 
it follows that Hi+l -- Uj Li+l,j is a countable subgroup of G. Furthermore, 

Li+l,j D_ Li,j and Hi = Uj Li,j, so Hi+l _D Hi. Finally, Ai,j is not subnormal in 

Bi,j C_ ///+1, so Ai,j is not locally subnormal in Hi+l. Thus conditions (1) and 

(2) are satisfied by Hi+l. 

It follows that the sequence H = Ho C_ H1 C_ H2 C . . .  exists, and we set 

/~ = Ui Hi. Certainly, /~ _D H a n d / t  is countable, so (i) holds. Furthermore, 

the set { Li,j[ i ~ 0 } is a local system for /1 contained in s since any finite 

subgroup of /~  is contained in some Hi with i r 0. This proves (iii) and the same 

remark, along with condition (2), yields property (ii). The final observation, 

namely that  H is an ascending union of members of s is now obvious. II 

3. Loca l ly  S o l v a b l e - B y - S e m i s i m p l e  Groups  

As we mentioned earlier, consequences of the Classification of Finite Simple 

Groups were used to study the semiprimitivity of group algebras of locally finite 

groups under certain global assumptions. For example, [P4] and [PZ] handled 

the infinite simple linear and nonlinear groups, respectively, while [P5] and [P6] 

used these results to handle groups with certain types of finite subnormal series. 

The following is a slight generalization of the main theorem of [P6] merged with 

the main result of [P3]. Note that the transitivity of subnormality implies that  

if A lsn N and N ~ G, then A lsn G. 
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PROPOSITION 3.1: Let K[G] be the group algebra of a locally finite group G 

over a field K of characteristic p > O. Suppose that  G has a finite subnormal 

series 

G o '~ G I "~ " " "~ Gn = G 

with each quotient G~+I/Gi either 

(i) locally p-solvable, or 

(ii) an infinite simple group, or 

(iii) generated by its locally subnormal subgroups. 

Suppose further that ff  K[Go] -= O. Then K[G] is semiprimitive if and only if 

G has no locally subnormal subgroups of order divisible by p. 

Proof'. In view of Lemma 2.1(ii), it suffices to show that  if G has no locally 

subnormal subgroups of order divisible by p, then ffK[G] = 0. For this, we 

proceed by induction on n, the case n = 0 being given. Now suppose the result 

holds for n - 1 and set H = Gn-1 ~ G. Since H has no locally subnormal 

subgroups of order divisible by p, the inductive assumption implies that  ffK[H] = 

0. Furthermore [P6, Lemma 3.4(iii)] implies that  ,TK[G] = 0 if G/H = Gn/G,~_I 

is generated by its locally subnormal subgroups. Thus we can assume that  G/H 

is either locally p-solvable or infinite simple. 

Now ffK[H] = 0, so Lemma 2.3 implies that  ffK[G] = ffK[D]. K[G] where 

D = DG(H), and it suffices to show that  ffK[D] = 0. To this end, note that  

N = D N H = D r ( H )  N H = DH(H) = A(H)  

is an f.c. group. Thus, since N ~ G has no locally subnormal subgroups of order 

divisible by p, it follows that  N is a / - g r o u p  and hence that  JK[N] = 0 by 

Lemma 1.2. Furthermore, 

D/N = D/(D A H) ~- D H / H  ,~ G/H. 

In particular, if G/H is locally p-solvable, then D is also locally p-solvable and 

[P3, Corollary 4.6] yields the result. On the other hand, if G/H is infinite simple, 

then either D = N or D/N is infinite simple. In the former case, ffK[D] = 

ffK[N] = 0 as required, and thus it suffices to assume that  D / N  is infinite 

simple. For this, note that  D acts in a finitary manner on H,  so it certainly acts 

in a finitary manner  on N = H A D. In other words, D = D D (N),  and therefore 

the result follows from [P6, Proposition 3.3]. | 
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I t  is interesting to compare the above to the following more elementary con- 

sequence of Lemma 2.3. Here we make the stronger assumption that  G has no 

nonidentity locally subnormal subgroups. 

LEMMA 3.2: Let G have a finite subnormal series 

(1) : Go ,3 G1 < . . . < Gn : G 

and suppose that flK[Gi+I/G~] = 0 for each i = 0, 1 , . . . ,  n - 1. I f  G has no 

nonidentity locally subnormal subgroups, then K[G] is semiprimitive. 

Proof." Again, we proceed by induction on n, the case n -- 1 being given. Now 

suppose the result holds for n -  1 and set H -- Gn-1 ~ G. Since H has no 

nonidentity locally subnormal subgroups, the inductive assumption implies that  

f fK[H] : 0. Thus, by Lemma 2.3, f ig[G] = f i g [D] .  K[G], where D = D e ( H ) .  

Now D N H -= A(H)  < G is a locally normal group. Thus, since D O H has 

no nonidentity locally subnormal subgroups, it follows that  D N H = (1). In 

other words, D is isomorphic to a normal subgroup of G / H  = G,,/Gn-1. But 

f fK[Gn/G,,-1] -- 0, so f fK[D] = 0 by Lemma 2.1, and therefore ffK[G] = 0 as 

required. 1 

The following is an immediate consequence of [BP, (4.1)] and Proposition 3.1 

with Go = (1). While it is not related to the main goal of this paper, the result 

is of interest because it completes the solution of the semiprimitivity problem for 

linear groups which are not necessarily locally finite. See [P7] for details. 

COROLLARY 3.3: Let G be a locally finite linear group in any characteristic. 

Then K[G] is semiprimitive i f  and only if G has no locally subnormal subgroups 

of order divisible by p. 

Recall that  a finite group S is said to be s e m i s i m p l e  if it is a direct product 

of nonabelian simple groups. Here we follow the notation of [Wl] and [Z], rather  

than tha t  of [G]. As is well known, if S = MI • M2 • . . .  • Mk, with each Mi 

nonabelian and simple, then every normal subgroup N of S is a partial  direct 

product  of the Mi's. Thus N is also semisimple, and it follows easily by induction 

that  every subnormal subgroup of S is normal and hence of the above form. For 

convenience, we call k the w i d t h  of S, and we write k -- wd S. 

Next, if S is any finite group, then we let sol S denote its unique largest normal 

solvable subgroup. Thus, so lS  is characteristic in S and, by [Z, page 246], it 
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contains all solvable subnormal subgroups of S. In particular, if N ~< S, then it 

follows that  sol N = N n sol S. 

Finally, we say that  S is so lvab le -by- semis imple  if S/sol S is semisimple. 

In this case, we define the w i d t h  of S to be that of S/sol S, so that  wd S is the 

number of simple factors of the semisimple group S/sol S. Note that,  if N ,~ S, 

then 

N /  solN = N / ( N  n solS) - N(solS) /  solS ,~,~ S/  solS. 

Thus N~ sol N is semisimple, N is solvable-by-semisimple, and wd N _< wd S. 

Furthermore, if N ~ S, then N(sol S ) / N  is a normal solvable subgroup of S / N  

with 
S / N  S S~ sol S 

N(sol S ) / N  N(sol S) N(sol S)/sol  S" 

Thus S / N  is also solvable-by-semisimple and wd N + wd S / N  = wd S. 

We say that  a group G is local ly  so lvab le -by- semis imple  if it has a local 

system consisting of finite solvable-by-semisimple groups. The next result is a 

first step towards settling the semiprimitivity problem for the group algebras of 

such groups. 

o o  LEMMA 3.4: Let T = Ui=I  Ti be an ascending union of the finite solvable-by- 

semisimple groups Ti and assume that there is an integer k such that each Ti has 

width <_ k. Then T has a finite subnormal series 

(1) = No ,~ NI ~ . .. ~ Nr = T 

such that each factor Ni+l/Ni is either a simple group or locally solvable. In 

particular, if T has no locally subnormal subgroups of order divisible by p, then 

K[T] is semiprimitive. 

Proofi We proceed by induction on k, the case k = 0 being trivial since any 

such group T is clearly locally solvable. Now suppose that  the result holds for 

k - 1 and let T have parameter k. 
oo N We first observe that  if N ,~ T, then N = (.Ji=l( n Ti) and each N n Ti is 

solvable-by-semisimple with wd(N n T~) _< wdT~. Similarly, T / N  = (.J~l T~N/N 

and TiN /N  ~ TI/(NNT~) is solvable-by-semisimple with w d T i / ( N N T  0 <_ wdT~. 

Thus, all normal subgroups and factor groups of T inherit the properties of T, 

with the same parameter k. 



492 D.S. PASSMAN Isr. J. Math. 

Now let A be the union of all locally solvable normal subgroups of T. Then 

A is a locally solvable characteristic subgroup of T, and T/A has no nonidentity 

locally solvable normal subgroups. Since T/A has the same structure as that  of 

T, it therefore suffices to consider T/A. In other words, we may assume that  

A = (1) and hence that T has no nonidentity locally solvable normal subgroups. 

Next, let B be the intersection of all normal subgroups X of T with T/X 
locally solvable. Then T/B embeds in I-Ix T/X and, since T/B is locally finite, 

it follows easily that  T/B is locally solvable. Thus B is a characteristic subgroup 

of T having no nonidentity homomorphic image which is locally solvable. Again, 

B has the same structure as that  of T, so it suffices to assume that  B = T. 

In other words, we may now suppose that  T has no nontrivial locally solvable 

normal subgroups or factor groups. 

If T is simple, we are done. If not, let N be a nontrivial normal subgroup of 
_- oo N -~ T. Then, as we noted before, N Ui=l(  n Ti) and T/N U~=IT~/(N n Ti). 

Furthermore, 

w d ( g  n T~) +wdTj(NAT~) = wdT~ < k. 

Since T/N is not locally solvable, we must have wdTj(N n Ti) _> 1 for almost 

all i. Thus wd(N n Ti) <_ k - 1 for infinitely many subscripts and, by induction, 

the result holds for the group N. Similarly, since N is not locally solvable, 

w d ( g  n Ti) > 1 for almost all i, so wdTJ(g N Ti) _< k - 1 for infinitely many 

subscripts and, by induction, the result also holds for T/N. 
In other words, both N and T/N have suitable finite subnormal series and, by 

combining these, we obtain the required series for T. Proposition 3.1 now yields 

the semiprimitivity aspect of the result. I 

We now consider more general locally solvable-by-semisimple groups. Here our 

result is not as sharp as the above because we assume that G has no noniden- 

t i ty locally subnormal subgroups rather than the expected no locally subnormal 

subgroups of order divisible by p. 

Let us recall some notation and several elementary lemmas from [PZ]. To start  

with, let { xl ,  x 2 , . . . ,  x8 } be a finite subset of G # = G \{1} .  Then an element 

z E G is said to be a p - insu la to r  for this set if z is a p-element, but zxi is not 

a p-element for any i = 1, 2 , . . . ,  s. It follows, as in [PZ, Lemma 7.4(ii)], that  

if a �9 K[G] with supp a = { 1, xl,  x 2 , . . . ,  x~ } and if z exists, then za is not 

nilpotent and hence a ~ ,TK[G]. Now, it is easy to see that p-insulators exist 
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for single element sets. Indeed, let H be any group with Op(H) = (1) and let 

x E H #. Then [PZ, Lemma 1.4] guarantees the existence of a p-element h E H 

such tha t  hx is not a p-element. For sets with at least two elements, the existence 

of a p-insulator is more problematic. 

Finally, let Af denote the set of natural  numbers and suppose f l ,  f 2 , . . .  , fk 

are maps from Af to Af. As is well known (see for example [PZ, Lemma 1.3]), if 

each fl  is unbounded on all subsequences of H ,  then there exists a subsequence 

~4 C_ N" such that  each fi is strictly increasing on A~. In particular, min~{f~} is 

unbounded on A~. 

LEMMA 3.5: Let G = Ui~l  Li be the ascending union of the finite solvable-by- 

semisimple subgroups Li. If  G has no nonidentity locally subnormal subgroups, 

then K[G] is semiprimitive. 

Proof'. We suppose, by way of contradiction, that  G has no nonidentity locally 

subnormal subgroups and that  JK[G] r 0. Because of the latter, we can choose 

a,  H and W as in Lemma 2.4. In particular, a is a nonzero element of minimal 

support  size in JK[G] with 1 E supp a,  H = (supp a),  and W is a finite group 

containing H with W = H w. By deleting terms if necessary, we can assume that  

W _C L1 and hence that  W C_ L~ for all i. 

Write s u p p a  = { 1, x1 ,x2 , . . .  ,x8 } _C H,  let Xj  = (xj), and define Tj = X ~  

to be the normal closure of Xj in G. Since Xj C_ LI, it is clear that  Tj is the 

ascending union Tj = Ui x j  L~ and, of course, each X L' is solvable-by-semisimple. 

We can now let fj(i) be the width of X f '  and, in this way, we obtain finitely 

many functions fx, f2, �9 �9 �9 , fs: .IV" ~ iV'. There are two cases to consider according 

to whether the f j 's  are bounded or not. 

CASE 1: Assume that some fj  is bounded on a subsequence olaf .  

Proo~ By deleting terms, we can assume that  f j  is bounded on Af. For conve- 

nience, write X = Xj  and T = Tj = X C. Then T is the ascending union of the 

solvable-by-semisimple groups X L~, each of width at most max fj(Af). Further- 

more, since T ~ G, T has no nonidentity locally subnormal subgroups. Thus, by 

Lemma 3.4, JK[T] = 0. Furthermore, since W normalizes T ~ G, we can apply 

Lemma 2.4(iv) with N = T to conclude that  W C_ A(TW)  and therefore that  

X c T n A(TW) C_ A(T).  But A(T)  is generated by all finite normal subgroups 

of T, so A(T)  = (1} and this is a contradiction since X r (1). | 
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CASE 2: Assume that the f j are unbounded on all subsequences of H.  

Proof" Here we construct a p-insulator for the set { xl ,  x2 , . . .  , xs }. To this end, 

note that  mini {f j  } is an unbounded function on A/', and hence there exists n E Af 

with f j  (n) >_ s for all j .  Write Ln/soILn = M1 • M2 •  as a finite direct product 

of nonabelian simple groups, and let 7rk: Ln --* Mk and 7r: L~ ~ L~/so lLn be 

the natural  epimorphisms. 

Since (xj) = X j  c_ Ln, it is clear that  ~r(X Ln) = 7r(Xj) lr(L~) is the direct 

product of those Mk's with 7rk(Xj) r 1. In particular, since f j (n)  >_ s, it follows 

that  each xj projects nontrivially to at least s of the factors Mk. But there are 

only s members of the set { Xl, x2 , . . .  , x ,  }, and therefore it is obvious that  we 

can relable the Mk's in such a way that  ~rj(xj) r 1 for all j = 1, 2 , . . .  , s. 

Finally, since Op(Mj) = (1), [PZ, Lemma 1.4] guarantees the existence of a 

p-element 2j E Mj with 2jTrj(xj) not a p-element, and we set f. = ZlZ2". "2s E 

Ln/sol  Ln. Then ~ is obviously a p-element, and hence we can choose a p-element 

z C Ln C G with 7r(z) = 2. Now note that  7 r j ( Z X j )  ~- 7 r j ( z ) ' l r j ( x j )  ~- z j T r j ( x j )  

is not a p-element for any j .  Thus zxj is not a p-element, and z is indeed a 

p-insulator for the set { xl ,  x 2 , . . . ,  x~ }. But supp a = { 1, xl ,  x 2 , . . . ,  x8 }, so 

[PZ, Lemma 7.4(ii)] implies that  a ~ fig[G], and this contradiction yields the 

result. | 

4. Finitary Permutation Groups 

If ft is any nonempty set, we let Sym~ denote the full group of permutat ions on gt, 

and we let FSymn denote its normal subgroup consisting of all those permutat ions 

which move only finitely many points. Thus the f i n i t a ry  s y m m e t r i c  g r o u p  

FSyma  is a locally finite group having the finitary alternating g r o u p  FAlta 

as a normal subgroup of index 2. If I~1 >_ 5, then FAlta is of course a simple 

group and, for convenience, we use FAlto~ to denote finitary alternating groups 

of any infinite size. The following result is an immediate consequence of the work 

of [W2] and is presumably well known to the experts. 

PROPOSITION 4.1: Let G be a permutation group on the set ~ and let H be a 

finite subgroup of G which moves only finitely many points. I f  G = H c is the 

normal closure of H in G, then G has a finite subnormal series with factors which 

are either locally finite fc.  groups or isomorphic to suitable FAltoo. 

Proof By assumption, G C_ Symn and H C_ FSyma ,~ Symn. Thus since G = 
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H a ,  it follows that  G C_ FSyma and hence that  G is locally finite, fur thermore ,  

since H can act nontrivially on only finitely many orbits, the same is true of G. 

Thus, by deleting one point orbits if necessary, we can assume that  G has only 

finitely many orbits, say ftl ,  f t2 , . . .  , ftk. We proceed by induction on k. 

CASE 1: k -- 1. 

Proof: By assumption, G is transitive on f~ = ~21. If If~ I < oo, then G is a finite 

group and hence an f.c. group. Thus we may suppose that  ft is infinite and that  

H moves precisely t points. 

If A is a block of imprimitivity and if IAI > t, then H fixes a point in A 

and hence H stabilizes A. Furthermore, since any G-conjugate of H also moves 

precisely t points, it follows that  A is stabilized by all such H 9. But G = H c is 

generated by the conjugates of H,  so A is stabilized by G and hence A = ft. In 

other words, all proper blocks have size _< t, and therefore we can choose F to be 

a proper block of maximal size. 

Now, the maximali ty of F clearly implies that  G is primitive on the set of 

blocks ft = { Fg I g �9 G }. Hence, if N is the kernel of the action of G on ft, then 

= G / N  ~- F S y m ~  or F n l t ~  by [W2, Satz 9.4] (or see [W3, page 228]). On the 

other hand, N stabilizes each Fg so, since N is finitary, it follows that  N embeds 

isomorphically in the direct sum of the various Symr~ -= Symn where n = IFI. 

Thus N is an f.c. group and G has the required subnormal series. | 

CASE 2: k > 1. 

Proof: We suppose that  ~ = ~ 1  I j ~ 2  I j . . .  i j ~ k  consists of k orbits and that  

the result holds for k -  1. Let N be the kernel of the action of G on F = 

~tl U ft2 U..  �9 U ftk-1 and let G = G / N .  Then G acts faithfully on F and certainly 

= / ~ .  Thus, since F consists of k - 1 orbits, the inductive assumption implies 

that  G has an appropriate finite subnormal series with factors which are either 

f.c. groups or isomorphic to suitable finitary alternating groups FAlt~.  

Finally, let G be the homomorphic image of G in Syma~ determined by its 

action on ~k. Since G = /~d, the k = 1 case implies that  G has a suitable 

subnormal series. ~ r t h e r m o r e ,  N acts faithfully on ~tk, so N ~ /V ~ G. In 

particular, the above series for G determines a subnormal series for N whose 

factors are normal subgroups of the factors of the G-series. But FAl t~  is simple, 

and any subgroup of an f.c. group is also an f.c. group. Thus, we obtain an 
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appropriate subnormal series for N and, by combining it with the known series 

for G = G/N ,  the result follows. | 

For convenience, we say that a finite group H is r e d u c e d  if sol H = (1). 

Equivalently, H is reduced if it has no nontrivial normal abelian subgroups or if 

Oq(H) = (1) for all primes q. 

Now let H be an arbitrary finite group and let soc H be its characteristic 

subgroup generated by the minimal normal subgroups of H. Since any two 

distinct minimal normal subgroups commute, it follows that the socle is in fact 

the direct product of certain of these subgroups. Furthermore, any minimal 

normal subgroup of H is either an elementary abelian q-group for some prime q 

or it is semisimple. In particular, if H is reduced, then soc H is semisimple, and 

this proves most of part (ii) of the following lemma. Note that  part (iv) uses a 

strong version of the Schreier Conjecture and requires CFSG. 

LEMMA 4.2: Let H be a finite reduced group. 

(i) Any  subnormal subgroup of H is also reduced. 

(ii) The socle of H is semisimple and CH (soc H) = (1). 

(iii) Write soc H = MI • M2 •  • Mk as a direct product ofnonabelian simple 

groups. Then every automorphism of H stabilizes soc H and permutes the 

factors M1, M2, . . �9 , Mk. 

(iv) I f  we let N = { h E H[ h stabilizes all Mi } = N~ NH (Mi), then N (4) = 

soc H, where N (4) is the fourth derived subgroup of N.  

(v) The Mi's above are precisely the minimal subnormal subgroups of H. 

Proof'. (i) If S ~ H and q is any prime, then Oq (S) characteristic in S implies 

that  Oq(S) C_ Oq(H) = (1). Thus S is reduced, and the subnormal case follows 

easily by induction. 

(ii) We already know that soc H is semisimple and hence it has trivial center. 

Thus CH (soc H) is a normal subgroup of H disjoint from soc H, and we conclude 

that CH (soc H) = (1). 

(iii) This follows since soc H is a characteristic subgroup of H and since the 

factors Mi are precisely the minimal normal subgroups of soc H. 

(iv) If N = Ni NH (M;), then clearly N _D soc H and hence N(4) _D (soc H)(4) ---- 

soc H. On the other hand, since CH (soc H) = (1), we know that N embeds in 

l-I~_1 Aut(M~) with soc H mapping onto I-I~=11nn(M~). Thus N/(soc H) embeds 
k 

in 1-[i=1 0ut(M~), and it follows from the Classification of Finite Simple Groups 
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and the specific computation of their automorphism groups (see [G, page 304]) 

that  each Out(M~) is solvable of derived length at most 4. Thus N (4) C_ soc H,  

as required. 

(v) Since M~ <~ H and Mi is simple, it is clear that  each M~ is a minimal sub- 

normal subgroup of H. Conversely, suppose M is a minimal subnormal subgroup, 

so that  M is certainly simple. If M is cyclic of prime order q, then it follows from 

[Z, page 247] that  M C_ Oq (H) = (1), a contradiction. Thus M is nonabelian 

simple and [Z, page 247] implies that  (soc H, M / is semisimple. In particular, 

we know that  every subnormal subgroup of the latter group is a canonical direct 

factor. Since this observation applies to both soc H and to M, it follows that  if 

M ~ soc H, then M C_ C u (SOC H) = (1), a contradiction. Thus M C soc H, so 

M ~,~ soc H and therefore M = Mi for some i. | 

Of course, if H is any finite group, t h e n / ~  = H~ sol H is reduced. Thus the 

above lemma applies t o / t  and, in particular, we know that  soc/~ is semisimple. 

We will be concerned with the inverse image of soc/~ in H and, for want of a 

better name, we call it the r ad ica l  of H. Thus S = rad H is the character- 

istic subgroup of H containing sol H and satisfying S~ sol H = s o c ( H / s o l H ) .  

Obviously, sol S = sol H and S is solvable-by-semisimple. 
OO Now suppose that  G = Ui=l Li is an ascending union of the finite groups L~. 

Then each S~ = rad L~ is solvable-by-semisimple and part (iii) of the previous 

lemma implies that  L~ permutes the finite set ~tl of simple factors of S j  sol Li 

by conjugation. As we will see, this local structure can be combined to yield 

a permutation representation for C itself. We follow an approach suggested by 

recent work of [H1] and [H2] on finitary linear groups. 

To start  with, let 9 ~ be an ultrafilter on the natural numbers Af which contains 

all cofinite sets. Then all members of $- are infinite and there is a natural permu- 

tation action of the ultraproduct group L = 1-[:~ L~ on the set ~t = I-[~= ~ .  Fur- 

thermore, there is a natural homomorphism 0: C -* L given by 0(g) -- 1-[7 0~(g), 

where 0~(g) = g if g C Li and 0~(g) = 1 otherwise (see for example [KW, page 

66]). In particular, the combined homomorphism G -~ L -* Syma yields a per- 

mutation representation of C on ~t. Of course, this action need not be faithful, 

but we do have some control over the kernel. Indeed, we prove 

LEMMA 4.3: With the above notation, if N is the kernel of the action of C on 

f~, then the fourth derived subgroup N (4) is locally solvable-by-semisimple. 
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Proof: We use the notation of the preceding paragraph. In addition, for each i, 

we let N~ be the kernel of the action of Li on ~i- We first show that if g E N, 

then C(g) = { i] 0~(g) E N~ } is contained in ..~. To this end, observe that  if 

i ~ C(g), then 0~(g) acts nontrivially on ~ and thus we can find w = 1-Ij= wi E 

satisfying w~Oi(g) ~ wi for all i E Af".C(g). But g E N acts trivially on ~, so 

5 c f 

and therefore d(g) = { i] wi = wiOi(g)} E ~-. Furthermore, since ~ is closed 

under finite intersections, we conclude more generally that if X is any finite 

subset of N, then 

C ( X ) = { i  10~(z) c _ N i } =  n C(x) E S .  
xEX 

Now we turn to the structure of N (4), and here our goal is to show that the 

set { N (4) n Sj } is a local system for this group. To this end, let H be any finite 

subgroup of N (4) and choose W to be a finite subgroup of N with H C_ W(4). 

By the result of the previous paragraph, C(W) = { i I O~(W) c_ Ni } E .T" and, in 

particular, C(W) is infinite. Thus there exists j E C(W) with W C_ Lj. But then 

W = Oj(W) C_ Nj, so H C_ W (4) c_ NJ 4) C Sj by Lemma 4.2(iv) applied to the 

reduced group Lj/solLj .  In other words, H C_ N (4) N Sj and { N  (4) n Sj } is 

indeed a local system for N (4). ~r the rmore ,  since N (4) N Sj "~ S j ,  it follows that  

each N (4) N Sj is solvable-by-semisimple. Finally, by deleting terms if necessary, 

we can write N (4) as the ascending union N (4) = UjE2~ N(4) n Sj where A/l 

is a suitable subsequence of A/', and consequently N (4) is locally solvable-by- 

semisimple. I 

We close this section by combining the various ingredients above into another 

semiprimitivity result. Notice that neither the hypothesis nor the conclusion 

mentions ultraproducts. 

OO 

LEMMA 4.4: Let G = Ui=l Li be an ascending union of the finite groups L~, 

and let H be a subgroup of L1 with G = H C. Suppose that k is a fixed positive 

integer and that, for each i, H moves at most k points in its conjugation action 

on the simple factors of rad  L~/ sol L~. If  G has no nonidentity locally subnormal 

subgroups, then K[G] is semiprimitive. 

Proof: We use the notation of Lemma 4.3 and the material preceding it. In 

particular, ~" is an ultrafilter on A/" containing all confinite subsets, and G has a 
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pe rmu ta t i on  representa t ion -: G --* S y m a  on the set ~ = 1-I7 ~2i. ~ r t h e r m o r e ,  if 

N is the kernel of this representat ion,  then  we know from L e m m a  4.3 t ha t  N (4) is 

locally solvable-by-semisimple.  But  N (4) <~ G, so N (4) has no nonident i ty  locally 

subnormal  subgroups,  and therefore L e m m a  3.4 implies tha t  , T K [ N  (4)] = 0. 

Next ,  we observe tha t  H moves at  most  k points of ~.  This  is, of course, a 

s t andard  fact and perhaps  the easiest proof  s tar ts  by labeling the points  of ~i  

moved by H as wl~, w?~,... , ~.k~, with duplicat ion if H moves less t han  k points.  

In this way, we obta in  k points  wJ E ~t given by wJ = 1-[7 w~, and we claim tha t  

these are the only possible points  of ~ moved by H.  Indeed, let a -- 1-I~- a i  be 
J any point  of ~ and define the sets A j = { i I (~i = wl } for j = 1, 2 , . . . ,  k, and let 

k j k j A ~ = IV" \ Uj=1,4 . Then,  since 9 ~ is an ultrafilter and since Uj=o ,4 = A/', it 
j follows tha t  ,42 E ~" for some j .  But  if j _> 1, then  a = 1-I j= a i  = I-[j= w~ = w 3 , 

whereas j = 0 clearly implies tha t  H fixes the point a .  

Thus  the c la im is proved and we see t h a t / q  _C FSym~.  In part icular ,  since G C 

Sym~ and G = / q ~  Proposi t ion  4.1 implies tha t  G = GIN has a finite subnormal  

series wi th  factors which are either f.c. groups or isomorphic to suitable FAl t~ .  

Thus  the same is clearly t rue for the group GIN (4). Finally, since J K [ N  (4)] = 0 

and G has no nonident i ty  locally subnormal  subgroups,  Proposi t ion  3.1 wi th  

Go = N (4) implies tha t  K[G] is semiprimit ive.  | 

5. F in i te  W r e a t h  P r o d u c t s  

In some sense, L e m m a  4.4 handles the semipr imi t iv i ty  p rob lem when a cer tain 

finite subgroup  H of G moves a bounded number  of points  in its act ion on 

the simple factors of the various rad L J  sol Li. Thus it remains  to consider the 

case where the number  of moved points  is unbounded,  and tha t  is the goal of 

this section. As will be apparent ,  the a rgument  requires a close look at  the 

irreducible representat ions of certain finite groups having s t ructures  similar to 

tha t  of a wrea th  product .  Of  course, when dealing with such representat ions,  

it is usually appropr ia te  to work over algebraically closed fields. The  following 

l e m m a  contains the key idea. 

LEMMA 5.1: Let G = S >~ W be a finite semidirect product and let [( denote 

the algebraic closure of K.  Suppose that 

(i) S = So x $1 x . . .  • St is a direct product o f t  + 1 groups, 

(ii) W stabilizes So and permutes the remainings S~ 's, 

(iii) W acts faithfully as a permutation gro~ip on the set  { $1, $ 2 , . . .  , St }, and 
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(iv) for each i = 1, 2 , . . . ,  t, the group Mgebra /([S~] has at least ]W I distinct 

irreducible representations. 

Then f f  K[V] N K[W] = O. 

Proof'. Since yK[G] is nilpotent,  it is clear tha t  YK[G] C_ ,7h'[G]. Thus  

it suffices to show tha t  yf([G] A/{[W] = 0, or equivalently we can assume 

tha t  K is algebraically closed. Fur thermore ,  since we will need to consider the 

orbits  of W on { S1, $ 2 , . . .  , St }, it is convenient to relabel these factors using 

double subscr ipts  so tha t  { Si,1, S i ,2 , . . .  , Si,t, } is the i th  orbit  of the action. In 

par t icular ,  if Wi is the stabilizer (normalizer) of S~,1 in W, then I W : W~[ = 

ti and we can choose right, eoset representat ives {w; ,1 ,wi ,2 , . . .  ,w~,t, } so tha t  

Si, j : S'~,~':. 

Now W~ normalizes  Si,1 and therefore it permutes  the irreducible representa-  

tions of K[S,,I]. But,  by assumpt ion  (iv), there are at. least IWI of the lat ter ,  so 

there are a t  least IW]/IWil = ti orbits  of these representat ions.  In par t icular ,  we 

can let G,1, @ 2 , - - .  , r be irreducible representat ions of K[Si,1] in dist inct  Wi- 
~ wi,3 

orbits,  and we define the irreducible representat ion Oi,j of t([Si,j] by G,j i,j " 

For convenience, let Oo denote the principal  representat ion of K[So]. 

Since K is algebraically closed, it now follows tha t  

0 = 0o | (@ 0 ,j) 
i,j 

is an irreducible representa t ion for 

= K[S0] | (@ K[s,,j]) 
i,j 

Of course, W normalizes  S, so W permutes  the irreducible representat ions  of 

K[S], and we claim tha t  it acts regularly on the W-orbi t  of 0. 

Indeed,  suppose w E W stabilizes 0 and let i, i ~, j, k be subscripts  with S~,j = 

Si,,k. Then  Si,j and S~,,k are in the same W-orbi t ,  so clearly i ~ = i. Fur thermore ,  

since 0 TM = O, uniqueness of tensor factors implies that. OW = Oi k. Thus,  

(~w , . , j  w w 
,~ = o i , j  = 0~,~ = r  '~ 

1 ~)Wt,3 V3W~,k W--1 or equivalently i,j = r But  w~,jw ~,~ C Wi, so r and r are in the 

same W~-orbit and therefore j = k. In other words, we have shown tha t  w acts  

t r ivial ly as a pe rmu ta t i on  on { S~,j }, so hypothesis  (iii) implies tha t  w = 1. 
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Finally, since G = S W  = S ~ W,  we now know that  the induced representation 

0 C = 0 | K[G] = 0 | K[W] 

is irreducible and hence OG(JK[G]) = O. On the other hand, the restriction 

(OG)w is isomorphic to the direct sum of 0(1) copies of the regular representation 

of K[W], and therefore 0 G is faithful o n  K[W]. Since OC(JK[G] N K[W]) = 0, 

we conclude tha t  JK[G] n K[W] = O, and the result follows. 1 

We remark that  the assumption above on the number of irreducible represen- 

tations of each /([Si] is definitely required. This can be seen in Example 5.3 

below. To star t  with, we need 

LEMMA 5.2: Let W be a finite group and let R * W  be a skew group ring which 

is a K-algebra over a field of characteristic p > O. Suppose 1 = el + e2 +" " +  et 

is an orthogonal decomposition of 1 into central idempotents of R and that W 

permutes the set { el, e2, . .  �9 , et }. Furthermore, i f  Wi is the stabilizer of ei in W,  

assume that IWiI is divisible by p and that  some subgroup Pi of  Wi of order p 

centralizes Rel. Then I?V E J ( R , W )  N K[W], where lfV = ~-~wew w is the sum 

of the elements of W in KIWI  C_ R , W .  

Proo~ If X is any subset of W, we let )~ denote the sum of the elements of X 

in K[W]. Note that  if w E W, then wI~ = IfV = r and w R  = Rw. Thus, 

it follows tha t  eiI?VR is a right ideal of R , W ,  and we claim that  this ideal has 

square zero. For this, it suffices to show that  

o = e ~ W R e i W  = e~We~RW. 

To this end, observe that  if w E W, then e~wei =- we~ei = wejei, where 

e~ = ej. Thus this product is zero if w ~ Wi, and it is equal to wel when 

w E Wi. Consequently, ei l~ei  = l~iei, and hence 

e~ I?V ei R i?V = I?Vi ( ei R ) I?V. 

Furthermore, note that  I)d~ = Ci/5~, where Ci is a set of left coset representatives 

for Pi in Wi and, since Pi centralizes eiR, we have 

But Pil?d -- IP~II~V = plIV -- 0, so the claim is proved. 
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I t  follows that  eiI?VR c_ ,7(R.W), so eiI?d C J ( R . W )  for each i and hence we 

have lzd t J(R*W), required. | = ~ = 1  e~W ~ as 

With this, we can prove 

Example 5.3: Let A be a finite abelian group with precisely m irreducible rep- 

resentations over the algebraically closed field K of characteristic p > 0 and let 

t = m ( p - 1 ) + l .  I f G  is the permutat ion wreath product G = A I S y m t  = 

S >4 W, where S = A x A x .- .  • A is the base group and W = Symt, then 

I;V E JK[G] N K[W]. Hence, the latter intersection is nonzero. 

Proo~ Since S ,~ G, we have JK[S].  K[G] C_ JK[G] and hence it suffices 

to mod out by this ideal. When we do so, we obtain a skew group ring R.W, 

where R is the semisimple K-algebra K[S]/JK[S]. In fact, R = R1 | R2 | 

�9 .. @ Rt, where each R~ is isomorphic to the commutative semisimple algebra 

K[A]/JK[A]. Furthermore, W -- Symt permutes the Ri 's via the natural  action. 

Note that  the irreducible representations of R are all tensor products of the 

form O = 01 | 82 |  " | ~t, where each 0~ is an irreducible representation of R~ --- 

K[A]/JK[A]. Furthermore, K[A]/JK[A] has precisely m distinct irreducible 

representations and t > m(p - 1). Thus, for any such 8, at least p of the 0i 

are identical, and it follows that  0 is fixed by a p-cycle we E W -- Symt. In 

particular, if e0 is the centrally primitive idempotent of R corresponding to 8, 

then we centralizes ee. In fact, since R is commutative, we have eeR = eeK and 

hence we centralizes eeR. Lemma 5.2 now implies that  lzd E J(R*W) n K[W] 

and, by pulling back this inclusion, we obtain W E JK[G] n K[W]. | 

The preceding example is somewhat unsatisfactory in terms of the type of 

group we are studying here. Specifically, we are interested in groups of the form 

G = S ~ W where S is semisimple, rather than abelian. Unfortunately, we do 

not have a construction which can handle that  situation. 

Hypothesis (iv) of Lemma 5.1 also gives rise to another natural  question. 

Namely, what can be said about a finite group H if we know the number m 

of irreducible representations of K[H] where K is an algebraically closed field? 

If char K = 0, there is an old result (see [I2, Theorem 4.13]) which asserts that  

IH[ is bounded by a function of m. On the other hand, if char K = p > 0, then 

the answer is not so obvious. To start  with, the number of such representations 

is the same as the number of p-regular classes of H (see [I1, Corollary 15.11]). 
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Thus, for example, if H is a p-group, then m = 1 while the order of H can be 

arbitrarily large. 

A next guess might be that IH/Op (H)I is bounded by a function of m, but this 

is most likely also false. For example, if p = 2 n - 1 is a Mersenne prime, then we 

can let H -- A >~ P where A is an elementary abelian 2-group of order 2 n, P is 

cyclic of order p, and P acts transitively on the nonidentity elements of A. Then 

Op(H) = <1) and m = 2, while IHI = p(p § 1) can presumably be unbounded. 

In general, it is possible that if both Op(H) -- (1) and O p' (H) = H, then IHI is 

bounded by a function of m. 

For our purposes, it is more appropriate to assume that H is nonabelian and 

simple. Here IHt is probably bounded by a function of m using a proof based 

on CFSG. For example, suppose H = Altn. If p ~ 3, then H has p-regular 

classes consisting of products of t disjoint 3-cycles for t -- 0, 1 , . . . ,  [n/3]. Hence 

1 d- [n/3] < m and n < 3m. On the other hand, if p = 3, then H has p-regular 

classes consisting of products of 2t disjoint 2-cycles for t = 0, 1 , . . . ,  [n/4], and 

hence n < 4m. Thus, in either case, IHI = n!/2 < (4m)!. 

For the classical linear groups, one can use their order formulas (see [G, page 

135]) along with the Miraculous Prime Theorem (JAr, Corollary 1]) to guarantee 

that  if the rank of H is large, then IHI is divisible by many distinct primes. But 

m clearly bounds the number of distinct prime factors of IHI, and therefore it 

also bounds the rank of H. This solves half the problem, but there still remains 

the task of bounding the size of the defining field for all finite simple groups of 

Lie type. This appears to be a more tedious problem, but certainly it is one that  

can be settled. 

In the case of semisimple groups, if S = M1 x M2 x . . .  x Mk is a direct 

product of k nonabelian simple groups, then each K[M~] has at least 2 irreducible 

representations and therefore, by taking tensor products, K[S] has at least 2 k 

irreducible representations. In particular, k _< log 2 m, and this elementary fact 

is all we require. 

LEMMA 5.4: Let G = S W  be a finite group with S a normal semisimple sub- 

group. Suppose that, under the permutation action of W on the simple factors of 

S, every nonidentity normal subgroup N of W moves at least 41wJ points. Then 

it follows that JK[G] N K[W] = O. 

Proof: First observe that  S N W is a normal subgroup of W which normalizes 
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all simple factors of S. Thus, by assumption, S A W  = (1) and G = S W  = S >~ W 

is a semidirect product. 

Next, we partition the simple factors of S into larger subgroups S~,j via the 

following somewhat complicated procedure. To start with, let W1, W2,. . .  , Wt 

be representatives of the conjugacy classes of subgroups of W and, for each i, let 

{ 1 = wi,1, wi ,2 , . . .  , wi,n~ } be a full set of right coset representatives for Wi in W. 

Of course, every transitive permutation representation (W, F) of W is isomorphic 

to a unique (W, W / W i ) ,  where the latter is the permutation action of W on the 

cosets of W~. 

Now W permutes the set ~ of simple factors of S by conjugation and, for 

each i, let ~i,1, fl~,2, �9 �9 �9 , ~2i,v~ be the orbits of this action which are isomorphic to 

(W, W/W~) .  In particular, for each 1 < k < v~, we can choose a, not necessarily 

unique, simple factor M~,k E fli,k whose stabilizer in W is equal to Wi. Then 
Wi, j V~ Wl , j  

~2i,k = { M~, k I J = 1, 2 , . . .  "; ni } and, for each i , j ,  we define S~,j = I-L=1Mi,k '~ 

S. Note that  
t n i  1. S is the direct product S = [L=I  1-Ij=l S~,j, 

'wi,j 
2. S~,1 is stabilized by Wi and Si,j = SiA , 

3. S i s  contains at most one simple factor from each W-orbit of ~. 

: = I - I j = l  Sis ,  then Furthermore, if V { il vi >_ log2 IW] } and if So YL~v '~' 
n i  4. S is the direct product S = So x 1-Lev 1-Ij=l Si,j. 

It is now clear that  G -- S >~ W satisfies most of the hypotheses of Lemma 5.1. 

Indeed, (i) and (ii) follow from (4) and (2), respectively, while (iv) follows from 

the fact that  each Si,j with i E V is a direct product of vi _> log2 [WI nonabelian 

simple groups. Finally, suppose N ,~ W is the kernel of the permutation action 

of W on { Si,j[ i E ~, 1 _< j < ni }. Then N normalizes each Si,j with i E V and 

hence it permutes the simple factors which generate these groups. But, by (3), 

Si,j contains at most one simple factor from each W-orbit of ~, and therefore it 

follows that  N must stabilize each such point. In other words, the only simple 

factors moved by N are those contained in So. But observe that  t _< 21wI-x and 

ni = [W : Wit <_ IWI. Thus, since So is generated by those Si,j which contain 

vi < log 2 [W[ simple factors, we conclude that So contains at most 

(log 2 [W[). [W[. 2 Iwl-1 < [W[ 2. 2 Iwl-1 < 2 Iwl+l. 2 Iwl-1 = 4 Iwl 

points of fL Consequently, N moves less than 41wI points of ~ and therefore, by 

assumption, N = (1). 
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Thus G = S • W satisfies all the hypotheses of Lemma 5.1, and we conclude 

from the latter result that  fiE[G] A K[W] = O. | 

6. T h e  M a i n  T h e o r e m  

In this final section, we prove our main results on semiprimitivity. To start  with, 

we offer the 

Proof of Theorem 1.3: Recall that  G is assumed to be a locally finite group 

having no nonidentity locally subnormal subgroups and that  K is a field of char- 

acteristic p > 0. Our aim is to show that  K[G] is semiprimitive and we suppose, 

by way of contradiction, that  this is not the case. Then, by Lemmas 1.1 and 2.5, 

there exists a countable subgroup G of G such that  G has no nonidentity locally 

subnormal subgroups and fiE[G] ~ O. In other words, G is also a counterexam- 

ple, so it suffices to assume that  G -- G is countable and, in particular, that  G is 

the ascending union of the finite groups L1 C_ L2 C_ L3 C_ �9 �9 .. 

Since fiE[G] ~ O, there exists an element 0 ~ a E fiE[G] and finite subgroups 

(supp a)  = H C_ W which satisfy the conclusions of Lemma 2.4. For example, 

part  (iv) of that  lemma implies that  if T is any subgroup of G normalized by W 

and if fiE[T] = 0, then W C_ A(TW).  By deleting a few terms if necessary, we 

can of course assume that  W C_ L1. 

Now, if Si = rad Li, then W permutes the set ft~ of simple factors of S~/solLi 

by conjugation and, for each nonidentity normal subgroup N of W, we let fN(i) 

be the number of points of f~i moved by N. In this way, we obtain a finite 

collection of functions fN: Af --* Af U {0} and, as usual, there are two cases to 

consider according to whether these functions are bounded or not. 

CASE 1: For some (1) ~ N ~ W, the map fN is bounded on a subsequence of 
H. 

Proof: By deleting terms, we can assume that  fN is bounded on Af. Let k be 

an upper bound for the values of fN, and let T -- N [C] be the local subnormal 

closure of N in G. We apply the various conclusions of Lemma 2.2. To s tar t  

with, (iii) shows that  T has no nonidentity locally subnormal subgroups, and 

(iv) implies that  W normalizes T and that  T -- N T. Furthermore, by part  (ii), 

{ NILe] I i = 1, 2 , . . .  } is a local system for T and, by deleting terms if necessary, 

we can assume that  T is the ascending union of the subgroups T~ = N[ L~I ,~,~ L~. 
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Since Ti ,a,a Li, we know that 

T J  solT~ = Ti/(Ti • solL~) - T~(solL~)/ solL~ ~ L J  solLi. 

In particular, any minimal subnormal subgroup of Ti /sol  Ti is also a minimal sub- 

normal subgroup of Li/sol Li, so it follows from Lemma 4.2(v) that tad T J  sol Ti 

is a direct factor of rad Li/sol Li. More precisely, if Fi denotes the set of simple 

factors of radTjsolTi ,  then Fi _C f~i. Indeed, since this inclusion respects the 

action of N, we see that  N moves at most k points of Fi. 

Finally, since T = N T, Lemma 4.4 implies that JK[T] = O. Therefore, by 

Lemma 2.4, we conclude that W C_ A(TW) and hence that  N C_ T ~ A(TW)  C 

A(T). But A(T) is generated by all finite normal subgroups of T, so A(T) = (1) 

and this is a contradiction since N ~ (1). | 

CASE 2: The functions f g  are unbounded on all subsequences olaf. 

Proof" By [PZ, Lemma 1.3], there exists a subsequence Az[ C_ Af such that  each 

fN is strictly increasing on A/I. Consequently, minN{fy}  is unbounded on A/l, so 

there exists a subscript i with fN(i) >_ 4 IWI for all N. In particular, since SiNW ,~ 

W stabilizes all simple factors of Si/sol Li, it follows that Sin  W = (1). Now let 

Gi = SiW = S~ )~ W and consider the natural epimorphism -: Gi ~ G J  solSi. 

Then (~i = Si )~ I/~z, where Si = Si/solSi and ITV ~- W, so Lemma 5.4 and 

fN(i) >_ 41wI imply that  flK[Gi]NK[ITV] = 0. On the other hand, a �9 K[W] and 

a �9 flg[G]nK[Gi] C_ flg[Gi], by Lemma 1.1. Thus 0 r a e JK[Gi]NK[W] and 

hence ~ �9 ,TK[GI] N K[IZV]. But the map -: K[W] --+ K[ITV] is an isomorphism, 

so (~ r 0 and this contradiction yields the result. | 

As we mentioned earlier, the conjecture here is that  K[G] is semiprimitive if 

and only if G has no locally subnormal subgroups of order divisible by p. Thus 

Theorem 1.3 shows that  we are on the right track, and so also does the following 

special case. 

COROLLARY 6.1: Let G be a locally finite group having a local system s con- 

sisting of reduced groups. // 'char K = p > 0, then K[G] is semiprimitive if and 

only if G has no locally subnormal subgroups of order divisible by p. 

Proof: Let K be a field of characteristic p > 0 and let G be a locally finite group. 

If G has a locally subnormal subgroup of order divisible by p, then flK[G] ~ 0 by 

Lemma 2.1(ii). For the reverse implication, we assume that G has a local system 
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s consisting of reduced groups and that G has no locally subnormal subgroups 

of order divisible by p. The goal is to show that K[G] is semiprimitive. 

To start  with, let S be the characteristic subgroup of G generated by the 

set F = { M~I i E 5[ } of minimal locally subnormal subgroups of G. If Mi 

and Mj are two such generators and if M~,Mj C_ L for some L E s then 

Mi and Mj are clearly minimal subnormal subgroups of L. Thus, since L is 

reduced, Lemma 4.2(v) implies that Mi and Mj are nonabelian simple and that  

(Mi, Mj) = Mi • Mj. It follows that S = M1 • M2 • M3 •  is the direct product 

of the members of F, and hence that Z(S) = (1). Furthermore, by assumption, 

S is a p~-group and therefore we have fiK[S] = O. 

Now let C = Ca(S)  and D = De(S) .  Since C N S  = Z(S) = (1> and S 

contains all the minimal locally subnormal subgroups of G, it follows that C 

has no nonidentity locally subnormal subgroups. ~ r the rmore ,  since D ,~ G, we 

know that  D has no locally subnormal subgroups of order divisible by p. Finally, 

JK[S] = 0 and Lemma 2.3 imply that fig[G] = fig[D]. K[G]. Thus, our goal 

is to prove that fiK[D] = O. 

Suppose, by way of contradiction, that fiK[D] ~ O. Then we can choose 

0 ~ o~ E fig[D], and we set H = (suppc~) and T = H [D], the local subnormal 

closure of H in D. Of course, c~ E fig[D] N K[T] C_ fiK[T], so K[T] is not 

semiprimitive. Lemma 2.2 implies that T has no locally subnormal subgroups of 

order divisible by p and that T -- H T is the normal closure of H in T. 

Now C4r (S) = C n T ,~ T and we note that if A lsn (C N T), then A lsn T and 

therefore A Isn G. But then A lsn C, and this yields A = (1). In other words, 

CA T satisfies all the hypotheses of Theorem 1.3, and therefore we conclude from 

our main theorem that  fiK[C N T] = O. 

Next, note that  T permutes the simple factors M~ of S and therefore it per- 

mutes the elements of S2 = [-J~ez Mi C_ S. Indeed, since T C_ D, each element 

x E T centralizes a subgroup of S of finite index, and therefore a normal sub- 

group of S of finite index. But all normal subgroups of S are partial products 

of the Mi's, so it follows that x centralizes all but finitely many of the M~'s. In 

other words, x acts like a finitary permutation on s Of course, the kernel of the 

action of T on ~ is C f~ T, so we conclude that T = T/(C N T) C FSym~. Thus, 

since 2 ~ - - /~T,  Proposition 4.1 implies that  2 ~ has a finite subnormal series with 

factors which are either f.c. groups or isomorphic to suitable FAltoo. 
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Finally, by lifting the above series, we see that T has a subnormal series 

C N T  : To,~TI ~ . . . ~ T n  : T 

with each quotient Ti+I/T~ either infinite simple or generated by locally subnor- 

mal subgroups. Thus, since J g [ T 0 ]  = J K [ C  N T] = 0 and since T has no locally 

subnormal subgroups of order divisible by p, Proposition 3.1 implies that  K[T] is 

semiprimitive. But this contradicts the fact that  0 ~ a E JK[T], and therefore 

the corollary is proved. | 

The above argument actually offers an outline as to how to proceed further. 

Namely, assume that  G has no locally subnormal subgroups of order divisible 

by p, and let S be the characteristic subgroup of G generated by all its locally 

subnormal subgroups. Then S is a p'-group, so oqK[S] = 0 and therefore it 

suffices to prove that  K[Dc (S)] is semiprimitive. For this, we must first consider 

Ca(S)  and then the factor group Da(S) /Ca(S) .  Since both of these tasks will 

surely require additional work and additional ideas, they are best left for later 

projects. In fact, once those tasks are complete~l, we are still left with the problem 

of describing JK[G] for arbitrary locally finite groups G, and that  will offer some 

additional challenges. 

ADDED IN PROOF. The semiprimitivity conjecture for group algebras of locally 

finite groups was settled in the affirmative by the author in January 1995. See 

The semiprimitivity problem for twisted group algebras of locally finite groups 

which will appear in the Proceedings of the London Mathematical Society. 
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